If the equation begin pmatrix -2 3 5 1 end pmatrix begin-18710
If the equation: \(\begin{pmatrix} -2 & 3 \ 5 & 1 \ end{pmatrix}\begin{pmatrix} x \ y \ end{pmatrix} =\begin{pmatrix} b_1 \ b_2 \ end{pmatrix} \) has the solution for all \(b_1, b_2 in R \), then \(\begin{pmatrix} b_1 \ b_2 \ end{pmatrix} in \) __________.
This multiple choice question (MCQ) is related to the book/course vu mth501 Linear Algebra. It can also be found in vu mth501 Final Term - Quiz No.3.
If the equation: \(\begin{pmatrix} -2 & 3 \ 5 & 1 \ end{pmatrix}\begin{pmatrix} x \ y \ end{pmatrix} =\begin{pmatrix} b_1 \ b_2 \ end{pmatrix} \) has the solution for all \(b_1, b_2 in R \), then \(\begin{pmatrix} b_1 \ b_2 \ end{pmatrix} in \) __________.
Span$$ egin{Bmatrix} egin{pmatrix} -2 \ 3 \ end{pmatrix} , egin{pmatrix} 5 \ 1 \ end{pmatrix} end{Bmatrix} $$
Span$$ egin{Bmatrix} egin{pmatrix} -2 \ 1 \ end{pmatrix} , egin{pmatrix} 5 \ 3 \ end{pmatrix} end{Bmatrix} $$
Span$$ egin{Bmatrix} egin{pmatrix} 3 \ -2 \ end{pmatrix} , egin{pmatrix} 1 \ 5 \ end{pmatrix} end{Bmatrix} $$
Span$$ egin{Bmatrix} egin{pmatrix} -2 \ 5 \ end{pmatrix} , egin{pmatrix} 3 \ 1 \ end{pmatrix} end{Bmatrix} $$