If one of the eigenvalues of begin bmatrix A end bmatrix n n is-18707
If one of the eigenvalues of \(\begin{bmatrix} A end{bmatrix} _{n×n} \) is zero, it implies __________
This multiple choice question (MCQ) is related to the book/course vu mth501 Linear Algebra. It can also be found in vu mth501 Final Term - Quiz No.3.
If one of the eigenvalues of \(\begin{bmatrix} A end{bmatrix} _{n×n} \) is zero, it implies __________
The solution to $$ egin{bmatrix} A end{bmatrix} egin{bmatrix} X end{bmatrix} = egin{bmatrix} C end{bmatrix}$$ a system of equations is unique
The determinant of $$ egin{bmatrix} A end{bmatrix} $$ is zero
The solution to $$ egin{bmatrix} A end{bmatrix} egin{bmatrix} X end{bmatrix} = egin{bmatrix} 0 end{bmatrix}$$ system of equations is trivial
The determinant of $$ egin{bmatrix} A end{bmatrix} $$ is nonzero