Consider The Following Dynamic Programming Implementation Of #2051

Consider the following dynamic programming implementation of the Knapsack problem:</p> <pre><code class="language-c"> #include<stdio.h> int find_max(int a, int b) { if(a > b) return a; return b; } int knapsack(int W, int *wt, int *val,int n) { int ans[n + 1][W + 1]; int itm,w; for(itm = 0; itm <= n; itm++) ans[itm][0] = 0; for(w = 0;w <= W; w++) ans[0][w] = 0; for(itm = 1; itm <= n; itm++) { for(w = 1; w <= W; w++) { if(wt[itm - 1] <= w) ans[itm][w] = ______________; else ans[itm][w] = ans[itm - 1][w]; } } return ans[n][W]; } int main() { int w[] = {10,20,30}, v[] = {60, 100, 120}, W = 50; int ans = knapsack(W, w, v, 3); printf("%d",ans); return 0; }</code></pre> <p>Which of the following lines completes the above code?

Online Quiz This multiple choice question (MCQ) is related to the book/course gs gs122 Data Communication and Computer Network. It can also be found in gs gs122 Dynamic Programming - 0/1 Knapsack Problem - Quiz No.1.


Similar question(s) are as followings:



Online Quizzes of gs122 Data Communication and Computer Network

Choose an organization

Theme Customizer

Gaussian Texture



Gradient Background